

TRANSFORMADORES DE DISTRIBUCIÓN Y POTENCIA

Somos una empresa emprendedora que nace de la necesidad de desarrollar la gran labor de distribución y comercialización de Transformadores Eléctricos en México con la finalidad de brindarle continuidad al servicio.

Misión

Contamos con el mayor Stock de transformadores, para la generación o transporte de la energía eléctrica a través de redes eléctricas de alta tensión, ya sean elevadores o reductores, dependiendo la aplicación del cliente o la alimentación de grandes cargas industriales.

Visión

Buscamos a corto plazo ser la empresa líder en la fabricación, comercialización y distribución de transformadores eléctricos en la República. Queremos formar parte activa del desarrollo de su empresa y demostrarle por qué somos el principal fabricante en México.

Valores

Nuestros procedimientos nos permiten entender cada una de las necesidades de nuestros clientes y de esa forma cumplir con las expectativas que se generan al rededor de la compra de nuestros transformadores.

Objetivos

Tenemos como labor desarrollar el diseño del núcleo, bobinas y aislamientos de la parte activa cumpliendo los parámetros técnicos necesarios como son los esfuerzos de corto circuito, eficiencia, etc para el diseño del transformador y el cuplimientos de las pruebas en laboratorio, afín de garantizar la funcionalidad y calidad del transformador.

CONTENIDO

Normas de fabricación	5
Proceso de fabricación	6
Transformadores tipo poste	10
Transformadores tipo poste monofásico	12
Transformadores tipo poste trifásico	16
Transformadores tipo pedestal trifasico	18
Transformadores trifásicos de media tensión	22
Transformadores trifásicos de baja tensión	24
Transformadores tipo subestación	26

NORMAS DE FABRICACIÓN

Nuestros Transformadores son diseñados de acuerdo a un proceso computarizado mediante con el cuál se logra optimizar los resultados en las pruebas finales de laboratorio y con esto dar cumplimiento a los requerimientos de las normas, especificaciones y requisitos solicitados por nuestros clientes, así como requeridos en las Normas Oficiales NOM, las Normas Mexicanas NMX-J y las especificaciones de CFE NRF-025 K0000-04 y K0000-08.

Todos nuestros productos estan acreditados ante la EMA (Entidad Mexicana de Acreditación). Los equipos de medición son contrastados y certificados por

laboratorios y metrología y de CFE (LAPEM), lo que nos permite garantizar el buen desempeño y óptimo funcionamiento de nuestros equipos.

NMX-J-116-ANCE Vigente - Transformador de Distribución tipo Poste y Subestación.

NMX-J-169-ANCE Vigente - Métodos de prueba de transformador.

NMX-J-284-ANCE Vigente - Transformador de Potencia.

NMX-J-285-ANCE Vigente - Transformador tipo pedestal

NORMA Oficial Mexicana - NOM-002 SEDE 2010.

Especificación de CFE (NRF-025-CFE-2005) Vigente.

Especificaciones de PEMEX (NRF-143-PEMEX) Vigente

Especificación de CFE (K0000-04 y -08).

Transformador Pedestal Monofásico y Trifásico.

PROCESO DE FABRICACIÓN

Bobinas y/o Devanados

Las bobinas y/o debanados están formados por conductores de alta pureza, con aislamiento de alta estabilidad térmica y resistentes al envejecimiento.

Núcleo

El núcleo del transformador es de acero al silicio de grano orientado de alta calidad y permeabilidad magnética, revestida con una película aislante inorgánica inactiva en presencia de aceite aislante, que proporciona alta resistencia a las corrientes parásitas, reduciendo las pérdidas de energía, al mínimo. los núcleos y herrajes de sujeción forman una sola pieza estructural autosoportable de gran rigidez y de apoyo a las bobinas, aun bajo condiciones de movimientos rudos.

Tanque

Los tanques son de acero al carbón de alta graduación diseñados para soportar sin deformaciones, presiones superiores a las establecidas por las normas de calidad, con un recubrimiento epóxico y pintura de alta resistencia a la corrosión.

Proceso de Ensamble y Secado

Para poder obtener una eficiencia máxima en los aislamientos del conjunto núcleo-bobinas, se introducen en hornos tipo concha, que operan a temperaturas controladas al alto vacío para soportar las pruebas de laboratorio según normas y especificaciones vigentes.

Armado

El armado del conjunto núcleo-bobinas-tanque se realiza inmediatamente después de salir del horno de secado, para poder pasar al proceso de llenado de aceite, el cual se realiza al alto vacío, para asegurar que no existan residuos de humedad.

Aceite

El aceite dielectrico es de tipo no inhibido, refinado para equipos eléctricos, se utiliza como refrigerante aislante, con una tensión de ruptura dieléctrica superior a 35 kV. (ASTM-D-877).

Accesorios

Dependiendo de su capacidad y clase de aislamiento, cuentan con accesorios establecidos por normas ó especificaciones como:

Boquillas o aisladores

Termómetro con o sin contacto de alarma

Indicador del nivel de aceite con ó sin contactos de alarma

Ductos de alta y baja tensión

Cambiador de derivaciones, individual o en grupo de hasta 6 derivaciones Ventiladores automáticos para tranformadores de potencia tipo OA /FA

Pruebas de laboratorio

Nuestros transformadores son evaluados y verificados con valores apegados a las normas nacionales vigentes para garantizar su buen funcionamiento.

Pruebas de rutina

Relación de transformación Pérdidas en vacío

Resistencia de aislamiento Resistencia Ohmnicas de

Rigidex dieléctrica los devanados

Potencial aplicado Corriente de exitación

Potencial inducido Impedancia Pérdidas de carga Hermeticidad

Pruebas opcionales (prototipo):

Temperatura Impulso

Factor de potencia Resistencia de contactos

Corto circuito

Soporte técnico

Ponemos a disposición de nuestros clientes, programas de aseguramiento de calidad, inspección y auditorias, así como asesoramiento y mantenimiento. todos los colaboradores y socios de esta empresa cuentan con una amplía experiencia en la fabricación, supervisión y comercialización de nuestros productos los cuales se distribuyen a través de distribuidores y clientes en toda la República Mexicana.

Tabla para sección de fusibles para transformadores (Amperes)

		EN kV		
POTENCIA EN	SER	IE 15 kV	SERIE 20 kV	SERIE 30 kV
[kVA]	13,2 kV	13,8 kV	23 kV	34,5 kV
15	2	2	1	1
30	4	4	2	1
45	6	6	4	2
75	8	8	4	4
112,5	10	10	6	4
150	16	16	10	6
225	25	25	16	10
300	32	32	16	10
400	40	40	25	16
500	50	50	25	16
750	75	75	40	25
1000	100	100	50	40

Tabla de fusibles (del fabricante)

CON FACTOR DE POTENCIA = 0.9%

Tabla de equivalencia en KW Y HP para los KVA del transformador monofasico

CAPACIDAD DEL TRANSFORMADOR EN kVA	CAPACIDAD DE LA CARGA KWATTS (MÁXIMO)	CAPACIDAD DE LA CARGA H.P. (MÁXIMO)
10	9,000	12
15	13,500	18
25	22,500	30
37,5	33,750	45
50	45,000	60
75	67,500	90
100	90,000	120
167	150,300	200

Para otro factor corregir con la siguiente formula: Whatts = kVA * 1000 * Factor P.1 H.P. = 0.7457 KW

kVA	kwatts (máximo)	H.P. (máximo)
15	13,500	18
30	27,00	36
45	40,500	54
75	67,500	91
112,5	101,250	136
150	135,000	181
225	202,500	272
300	270,000	362
400	360,000	483
500	450,000	603
750	675,000	905
1,000	900,000	1,207
1,250	1,125,000	1,509
1,500	1,350,000	1,810
2,000	1,800,000	2,414
2,500	2,250,000	3,017

TRANSFORMADORES TIPO POSTE

Con el propósito de mantener un suministro adecuado a las necesidades de las líneas aéreas existentes, se requiere de equipos muy confiables para la expansión y operación de las ampliaciones de los tendidos aéreos. Consciente de esto, contamos con la más amplia gama de transformadores tipo poste Monofásico, Trifásico y Subestación.

El Transformador tipo poste es aplicable a sistemas de distribución aéreos, en fraccionamientos residenciales, colonias populares, en el centro de las ciudades, pequeñas industrias, centros comerciales y para cargas diversas. Este es el transfor mador más utilizado para la electrificación urbana y rural; diseñano para ser instalados en las redes de alimentación CFE.

CONDUCTORES

Conductores: Alambre y/o solera magneto de co-

bre, electrolitíco con pureza 99%

Aislamiento: Poli-amida modificada clase 200°C

Nomex con traslape del 50%

Calibre: Según diseño

Soldadura: Fost Copper, opcional plata

Norma: NW-35-C

AISLANTES

Calibre: Según diseño

Soldadura: Fost Copper, opcional plata

Norma: NW-35-C

NÚCLEO

Aislamiento

ambiental: NEMA1 Y NEMA 3R

Material Lámina negra varios calibres

Uniones: Soldadura en base y tanque, atornil-

lado en tapa registro y gargantas

Color: Gris ansi 61 o especificación del

cliente

Radiadores: Bateria de obleas según diseño

Gargantas: En alta y baja tensión

ESPECIFICACIONES TÉRMICAS

Clase: A

Elevación de 65°C*, opcional a 55°C

Enfriamiento OA

Calibre: Según diseño
Clasica del Insuldur 110
aislante: Prespan 130°C

CONEXIONES

Delta-Estrella / Estrella-Delta
Delta-Delta / Especiales

ACABADO

Horneado Pruebas mecánicas

PRUEBAS DE LABORATORIO

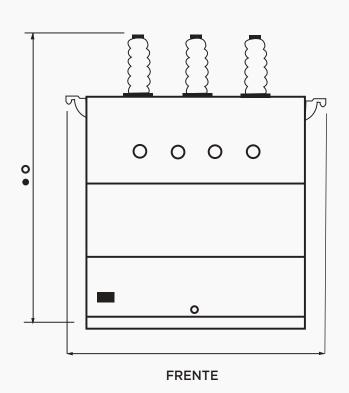
Resistencía de aislamiento Relación de transformación

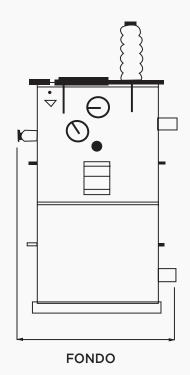
Resistencia Óhmica de los devanados

Tensión Aplicada Tensión Inducida

Polaridad y secuencias de fases

Perdidas en el vacio y corriente de excitación


Perdida con carga y % de impedancia


Hermeticidad del tanque

Rigidez dialéctrica del líquido aislante

TRANSFORMADORES TRIFÁSICOS													
CAPACIDAD	FRENTE		ALTO [MM]		FC	NDO [MM]	MASA APROX. [MM]					
[RVA]	[MM]	15 KV	25 KV	34.5 KV	15 KV	25 KV	34.5 KV	15 KV	25 KV	34.5 KV			
30			4===	4.470			005	532	536	536			
45	1115	1220	1373	1476			905	542	546	557			
75	1190	1310	1465	1575	735	/35	/35	/35	735		730	735	740
112.5	1190	1310	1403	13/3					767	783			
150	1425	1502	1654	1764	777	777	777	1063	1060	1066			
225								1195	1197	1208			

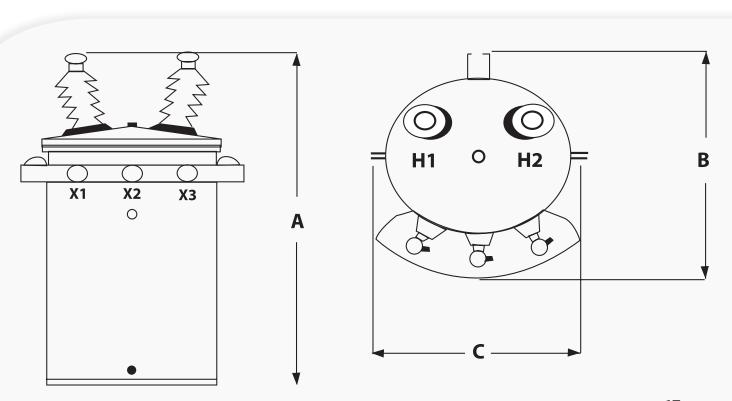
- Menor costo inicial
- Rápida instalación

11

TRANSFORMADORES TIPO POSTE MONOFÁSICO

A medida que las ciudades, zonas industriales y rurales crecen, se hace necesario que los sistemas de distribución de energía también se expandan, lo que permite que se puedan realizar las actividades más básicas del mundo de hoy.

Este tipo de transformadores son diseñados para der instalados en poste, en las redes de alimentación de CFE. para electrificación urbana y rural, en los sistemas de alimentación de centros comerciales, fraccionamientos de bajo consumo de energía.


MARCA	CONTINENTAL ELECTRIC								
Capacidad [kVA]	Desde 10 kVA, hasta	Desde 10 kVA, hasta 100 kVA							
Tipo de enfriamiento	ONAN	Fases		1Ф 2Ф					
Altitud de operación	2 300 m s.n.m.	Frecuencia		60 Hz					
		PRIMARIO	SECUNDARIO						
Tensiones [V] Y clase de aislamiento		3 200 V (15 kV) 3 000 V (25 kV)	120 /240 V (1,2 kV) 120 / 240 V (1,2 kV)						
		PRIMARIO	SECUNDARIO						
Derivaciones	2	DE 2,5% c/u	No aplica						
NBAI BIL	*	5 kV) 95 kV 25 kV) 150 kV	(1,2	kV) 30 kV					
Evaluación de temperatura		55°C 65°C	Tipo costa Tipo estáno	dar					

Dimensiones aproximadas de transformadores tipo poste monofásico y YT.

CAPACIDAD	CLASE 15 kV			
kVA	А	В	С	MASA [kg]
10	688	606	840	202
15	688	606	840	202
25	722	636	910	283
37,5	745	656	1030	380

^{*}Nota: dimensiones en milímetros

- Poco mantenimiento
- Unidad confiable

CONDUCTORES

Conductores: Alambre y/o solera magneto de

cobre, electrolitíco con pureza 99%

Aislamiento: Poli-amida modificada clase 200°C

Calibre: Según diseño

Soldadura: Estaño/Plomo 40/60

sin resina lubricante

Norma: NW-35-C

AISLANTES

Aislamiento: Estermag opcional Maylar o Nomex

Clase de aislamiento

aislamiento 1.2 kV eléctrico

NÚCLEO

Circuito Apilado de lámina de acero al silicio Mágnetico de gramo orientado rolado en frio

Espesor

núcleo tipo A: M19 (AISI)

Espesor

núcleo tipo B: M3 Y M4 (AISI)

Pérdidas: 1.65 W/kg @ 1.7 T a 60 Hz máximo

Ángulo entre 4

45 y 90 grados

hierro

ESPECIFICACIONES TÉRMICAS

Clase: B opcional f y H

Elevación de 80°C*, opcional a 115 y 150 °C

temperatura

Enfriamiento: AA

Clase de aislante: Estermag 150°C

ACABADO

Barnizado Horneado

Pruebas mecánicas

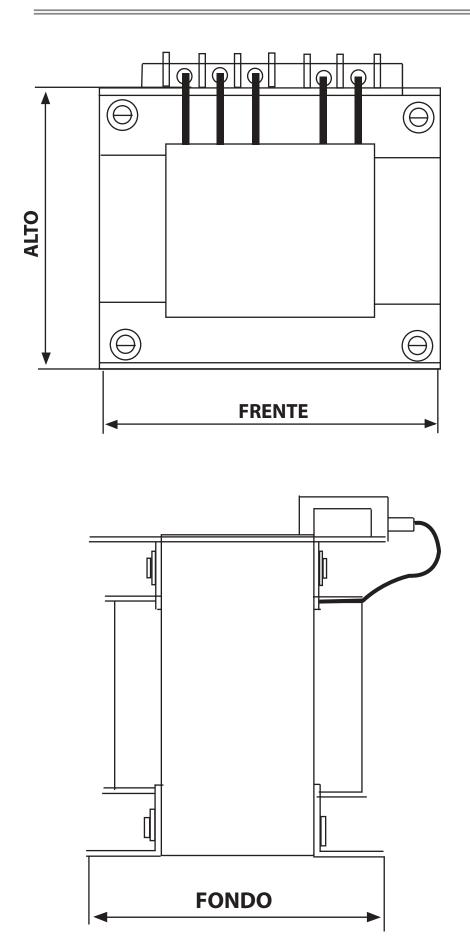
PRUEBAS DE LABORATORIO

Resistencía de aislamiento Relación de transformación

Tensión Aplicada

Resistencia Óhmica de los devanados

*Elevación de temperatura sobre una temperatura ambiente máxima de 40 $^{\circ}$ C y una temperatuta mbiente de 30 $^{\circ}$ C durante el período de 24 horas.


TRANSFORMADORES MONÓFASICOS DE CONTROL

	DIMENCION	EC ADDOVIN		
CAPACIDAD	DIMENSION	ES APROXIII	IADAS [mm]	MASA APROX. [kg]
[VA]	FRENTE	FONDO	ALTO	
50	76	72	71	1.35
75	76	72	71	1.35
100	94	85	82	2.38
150	108	85	92	3.10
200	115	100	100	3.95
250	115	100	100	3.95
300	115	115	100	4.7
350	114	120	100	5.26
400	114	130	100	5.26
500	133	107	135	6.90
750	133	117	135	7.00
1000= 1k	133	127	135	9.45
1500 = 1.5 k	155	132	170	13.25
2000 = 2k	155	140	170	13.25

TRANSFORMADOR	MONO	ÓFASICOS	TIPO	SECO

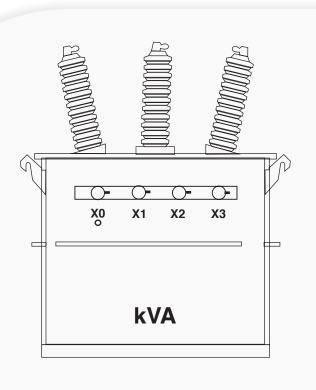
CAPACIDAD	DIMENSION	ES APROXIM	MASA APROX. [kg]				
[VA]	FRENTE FONDO		ALTO				
3000 = 3k	280	240	210	26.55			
5000 = 5k	280	155	210	33.27			
7500 = 7.5k	280	160	210	53.90			
10000 = 10k	380	350	300	66.45			
15000 = 15k	380	350	300	83.15			
20000 = 20k	380	410	325	109.09			
25000 = 25k	480	410	325	142.81			

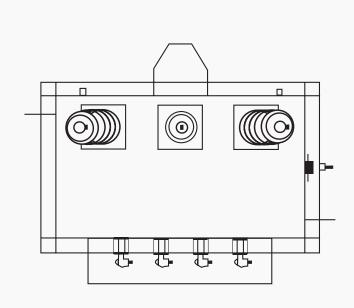
La altura se incrementa de acuerdo alas dimensiones de la kilka hasta 15 mm

TRANSFORMADORES TIPO POSTE TRIFÁSICO

En la instalación de las redes de distribución, las compañías eléctricas pueden optar por tender líneas aéreas trifásicas, dependiendo de diversos factores, tales como alta densidad, tensiones, requerimientos específicos de equipos, entre otros.

Este tipo de transformadores son diseñados para der instalados en poste, en las redes de alimentación CFE. para electrificación urbana y rural, en fraccionamientos residenciales, centros comerciales, hoteles, pequeñas industrias, equipos de bombeo, colonias populares y en todas partes donde se requiera alimentación trifásica.


MARCA	CONTINENTAL	CONTINENTAL ELECTRIC						
Capacidad [kVA]	Desde 15 kVA, hasta	Desde 15 kVA, hasta 150 kVA						
Tipo de enfriamiento	ONAN	Fases		3 Φ				
Altitud de operación	2 300 m s.n.m.	Frecuencia		60 Hz				
		PRIMARIO	S	ECUNDARIO				
Tensiones [V] Y clase de aislamiento	2	3 200 V (15 kV) 23 000 V (25 kV) 34 500 (34,5 kV)	120 /240 V (1,2 kV) 120 / 240 V (1,2 kV) 480 Y / 266 (1,2 kV)					
		PRIMARIO	S	ECUNDARIO				
Derivaciones	<u>+</u>	-2 DE 2,5% c/u	No a	aplica				
Conexión	Γ	Delta △ Delta △ Delta ≺	Delt	ella ≺ a △ ella ≺				
NBAI BIL		15 kV) 95 kV 25 kV) 150 kV	(1,2	kV) 30 kV				
Evaluación de temperatura		55°C 65°C	Tipo costa Tipo estáno	lar				

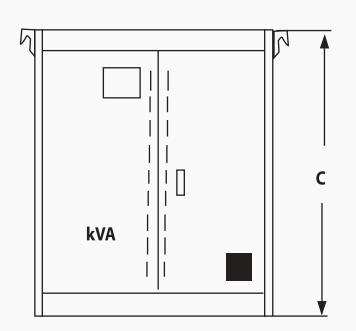

Dimensiones aproximadas de transformadores tipo poste trifásico.

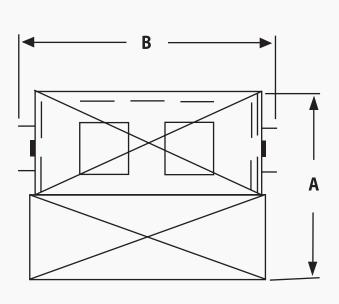
CAPACIDAD CLASE 15 kV				CLASE 25 kV			CLASE 34,5 kV					
kVA	Α	В	С	MASA [kg]	Α	В	С	MASA [kg]	Α	В	С	MASA [kg]
10	656	946	830	380								
15	660	920	850	390	660	986	840	476	900	1060	1500	660
25	660	970	900	410	660	1030	910	524	880	1080	1550	787
37,5	680	1010	980	521	680	1060	1030	763	685	1150	1580	884
25	700	1180	980	670	700	1265	910	934	705	1170	1610	1039
37,5	700	1220	1000	700	745	1365	1150	1011	705	1340	1660	1256

^{*}Nota: dimensiones en milímetros (mm)

- Ahorro de espacio
- Rápida instalación

TRANSFORMADORES TIPO PEDESTAL TRIFÁSICO


Los transformadores tipo pedestal son diseñados con un gabinete de frente construido de 2 secciones, en la parte frotal de ubica la alimentación y la salida de carga, su principal característica es que todo el sistema de mediación se encuentra integrado en un solo equipo. Este tipo de transformador se utiliza en sistemas de distrubución subteránea, generalmente para fraccionamientos residenciales, desarrollos habitacionales, centros comerciales, hoteles, hospitales, etc.


MARCA	CONTINENTAL ELECTRIC								
Capacidad [kVA]	Desde 30 kVA, hast	Desde 30 kVA, hasta 750 kVA							
Tipo de enfriamiento	ONAN	Fases			3 Φ				
Altitud de operación	2 300 m s.n.m.	Frecue	encia		60 Hz				
		PRIMARIO		SE	ECUNDARIO				
Tensiones [V] Y clase de aislamiento		13 200 V (15 kV) 23 000 V (25 kV) 34 500 (34,5 kV)		220 / 127 V (1,2 kV) 440 / 254 V (1,2 kV) 480 Y / 277 (1,2 kV)					
		PRIMARIO		SE	ECUNDARIO				
Derivaciones		±2 DE 2,5% c/u		No a	plica				
Conexión		Delta △ Delta △ Estrella ≺		Delta	ella < a				
NBAI BIL		(15 kV) 95 kV (25 kV) 150 kV (34,5 kV) 200 kV		(1,2 k	kV) 30 kV				
Evaluación de temperatura				ipo costa ipo estánd	ar				

Dimensiones aproximadas de transformadores tipo poste trifásico.

CAPACIDAD	CL	ASE	15 kV		CLA	5 kV		
kVA	Α	В	С	MASA [kg]	Α	В	С	MASA [kg]
30	1105	1450	1135	869	1105	1450	1135	890
45	1105	1450	1135	894	1105	1450	1135	925
75	1105	1450	1135	984	1105	1450	1135	992
112,5	1105	1450	1170	1060	1105	1450	1170	1086
150	1105	1450	1170	1122	1105	1450	1170	1145
225	1355	1740	1365	2030	1355	1740	1365	2105
300	1355	1740	1365	2315	1355	1740	1365	2406
500	1560	1740	1430	2653	1560	1740	1430	2814
750	1775	1850	1565	2968	1775	2555	1565	3272

^{*}Nota: dimensiones en milímetros (mm)

CONDUCTORES

Conductores: Alambre y/o solera magneto de

cobre, electrolitíco con pureza 99% Poli-amida modificada clase 200°C

Calibre: Según diseño

Soldadura: Fost copper, opcional plata

NW-35-C Norma:

AISLANTES

Aislamiento:

Aislamiento:

Insuldur y prespan

Clase de

aislamiento eléctrico

12, 25 y 34.5 kV

NÚCLEO

Circuito Mágnetico Apilado de lámina de acero al silicio de gramo orientado rolado en frio

Espesor Ángulo entre M3 y M4 (AISI) 45 y 90 grados

hierro Pérdidas:

1.65 W/kg @ 1.7 T a 60 Hz máximo

GABINETE

Uso: Intemperie

Material: Lámina negra varios calibres Uniones

Soldadura en base y tanque, atornillado en tapa y registro.

Color: Verde

Radiadores: Baterías de obleas según diseño Placa En corrientes de mayores de 500 A

ESPECIFICACIONES TÉRMICAS

Clase:

Elevación de 65°C*, opcional a 55°C

temperatura

Enfriamiento: OA

Clase de aislante: Insuldur 110°C y Prespan 130°C

CONEXIONES

Delta - Estrella Estrella - Delta Delta - Delta Especiales

ACABADO

Horneado

Pruebas mecánicas

PRUEBAS DE LABORATORIO

Resistencía de aislamiento Relación de transformación

Resistencia Óhmica de los devanados

Tensión Aplicada Tensión Inducida

Polaridad y secuencias de fases

Perdidas en el vacio y corriente de excitación

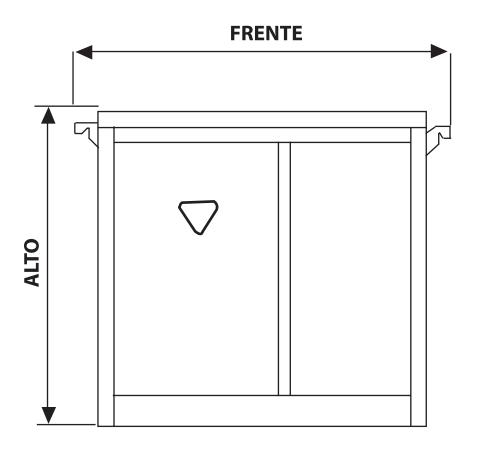
Perdida con carga y % de impedancia

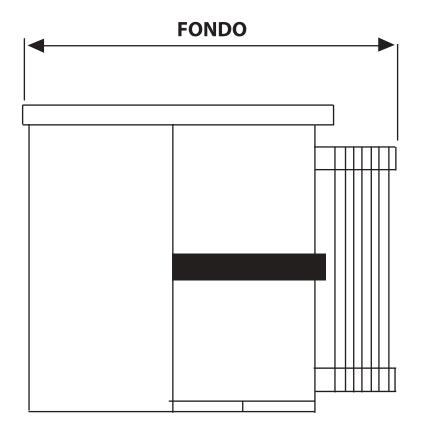
Hermeticidad del tanque

Rigidez dialéctrica del líquido aislante

TRANSFORMADORES TRIFÁSICO TIPO PEDESTAL **OPERACIÓN RADIAL**

CAPACIDAD	DIMENSION	ES APROXIM	ADAS [mm]	ACEITE	MASA
[VA]	FRENTE	FONDO	ALTO	[L]	[kg]
30	860	970*	1095	210	705
45	000	970	1093	207	715
75	890	1030*	1170	260	920
112.5	890	1030	1170	255	188
150	1050	1134*	1460	430	1295
225	1050	1365	1460	340	1375
300	1230	1745	1550	605	2050
500	1230	1745	1550	655	2358
750	1270	2018	1735	840	3066
1000	1270	2010	1/33	1005	3600
1500	1550	1975	1990	1355	4505
2000	1550	1975	1990	1565	5395


*Sin radiadores


TRANSFORMADORES	TRIFÁSICO	TIPO PEDE	STAL
OPERACIÓN ANILLO			

CAPACIDAD	DIMENSION	L3 APROXIM	ACEITE	MASA	
[VA]	FRENTE	FONDO	ALTO	[L]	[kg]
30	1135	1095*	1325	460	1040
45				458	1060
75				441	1180
112.5				436	1214
150	1230	1135*	1450	840	1500
225		1365		535	1640
300	1230	1745	1550	626	2050
500				655	2360
750	1270	2020	1735	850	3070
1000				1015	3600
1500	1545	1980	1990	1365	4505
2000				1570	5395

*Sin radiadores

^{*}Elevación de temperatura sobre una temperatura ambiente máxima de 40 $^{\circ}\text{C}$ y una temperatuta mbiente de 30 °C durante el período de 24 horas.

TRANSFORMADORES TRIFÁSICO SECOS DE MEDIA TENSIÓN

CONDUCTORES

Conductores: Alambre y/o solera magneto de

cobre, electrolitíco con pureza 99%

Aislamiento: Poli-amida modificada clase 200°C

Nomex con traslape del 50%

Calibre: Según diseño

Soldadura: Fost copper, opcional plata

Norma: NW-35-C

AISLANTES

Aislamiento: N

Nomex opcional Kapton

Clase de

aislamiento 5, 15, 25 y 34.5 kV eléctrico

NÚCLEO

Circuito Mágnetico Apilado de lámina de acero al silicio de gramo orientado rolado en frio

Espesor Ángulo entre M3 y M4 (AISI) 45 y 90 grados

hierro

Pérdidas: 1.65 W/kg @ 1.7 T a 60 Hz máximo

GABINETE

Aislamiento ambiental:

NEMA 1 y NEMA 3R

Material: Uniones

Lámina negra varios calibres Tornillos auto-roscables y soldadura

en base

Color: Gris ANSI 61 y a especificación del

cliente

ESPECIFICACIONES TÉRMICAS

Clase: Disponibles B, F, y H

150°C*

Elevación de

temperatura

Enfriamiento: AA/FA
Clase de aislante: Nomex 300*

CONEXIONES

Delta - Estrella Estrella - Estrella Delta - Delta Especiales

ACABADO

Horneado

Pruebas mecánicas

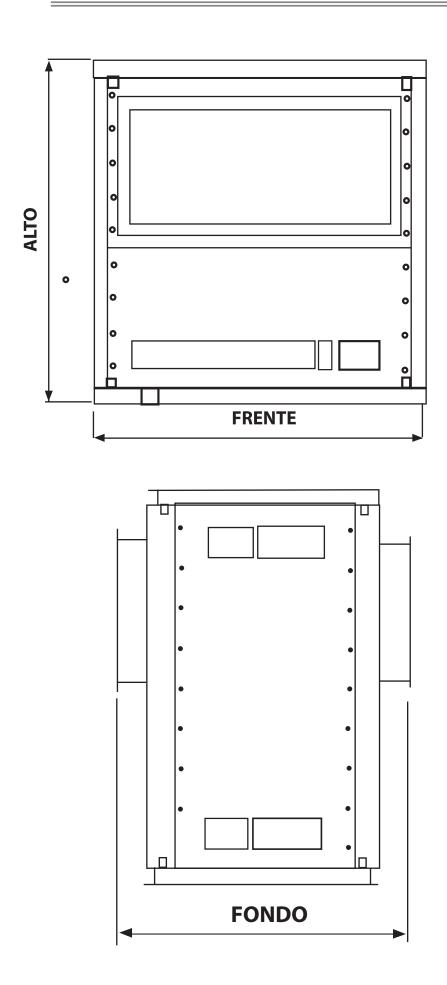
Barnizado

PRUEBAS DE LABORATORIO

Resistencía de aislamiento Relación de transformación

Resistencia Óhmica de los devanados

Tensión Aplicada Tensión Inducida


Polaridad y secuencias de fases

Perdidas en el vacio y corriente de excitación

Perdida con carga y % de impedancia

*Elevación de temperatura sobre una temperatura ambiente máxima de 40 $^{\circ}$ C y una temperatuta mbiente de 30 $^{\circ}$ C durante el período de 24 horas.

Т	TRANSFORMADORES TRIFÁSICOS SECOS DE MEDIA TENSIÓN												
CAPACIDAD	FRENTE	FONDO	ALTO	FONDO [MM]									
[kVA]	[MM]	[MM]	[MM]	5 KV	15 KV	25 KV	34.5 KV						
45				705	726	750	800						
75				815	852	872	922						
112.5	1600	1300	1300	2000	917	943	965	1015					
150				1017	1060	1150	1163						
225				1190	1232	1327	1790						
300	1000	1500	1500 2000	1375	1440	1570	1600						
500	1800	1500		1800	1845	1988	2040						
750				2060	2100	2325	2412						
1000				2890	2930	3284	3345						
1500	2000	1850	2400	3770	3794	4100	4100						
2000				4360	4453	4832	4930						

TRANSFORMADORES TRIFÁSICO SECOS DE BAJA TENSIÓN

CONDUCTORES

Conductores: Alambre y/o solera magneto de

cobre, electrolitíco con pureza 99%

Aislamiento: Nomex con traslape del 50% y/o

temperatura poliamida modificada clase 220 °C

Calibre: Según diseño

Soldadura: Fost copper, opcional plata

Norma: NW-35-C

AISLANTES

Aislamiento:

Nomex

Clase de aislamiento

1.2 kV eléctrico

NÚCLEO

Circuito Mágnetico Apilado de lámina de acero al silicio de gramo orientado rolado en frio

Espesor Ángulo entre M3 y M4 (AISI) 45 y 90 grados

hierro

Pérdidas: 1.65 W/kg @ 1.7 T a 60 Hz máximo

GABINETE

Aislamiento ambiental:

NEMA 1, NEMA 12 Y NEMA 3R

Material:

Lámina negra varios calibres Uniones Tornillos auto-roscables y soldadura

en base

Color: Gris ANSI 61 y a especificación del

cliente

ESPECIFICACIONES TÉRMICAS

H(También disponibe en clases B y F) Clase:

Elevación de

Enfriamiento: AA

Clase de aislante: Nomex 300*

CONEXIONES

Delta - Estrella Estrella - Estrella Delta - Delta Especiales

ACABADO

Horneado

Pruebas mecánicas

Barnizado

PRUEBAS DE LABORATORIO

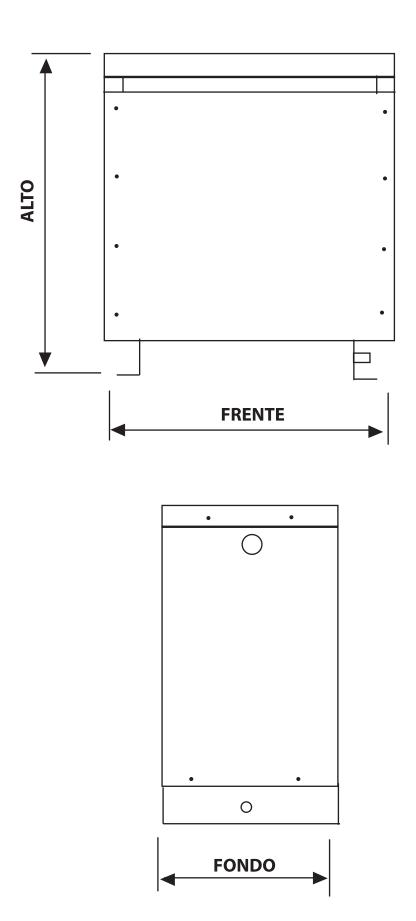
Resistencía de aislamiento Relación de transformación

Resistencia Óhmica de los devanados

150°C* (También disponible en 80 y 115°C)

Tensión Aplicada Tensión Inducida

Polaridad y secuencias de fases

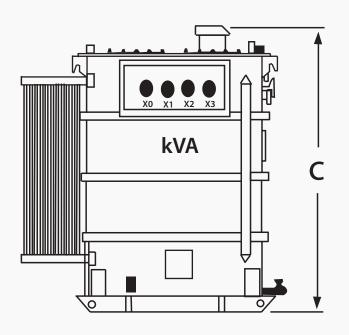

Perdidas en el vacio y corriente de excitación

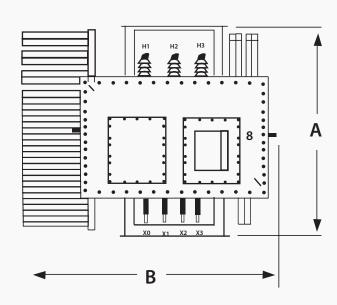
Perdida con carga y % de impedancia

*Elevación de temperatura sobre una temperatura ambiente máxima de 40 $^{\circ}\mathrm{C}$ y una temperatuta mbiente de 30 °C durante el período de 24 horas.

TRANSFORMADORES TRIFÁSICOS SECOS DE BAJA TENSIÓN

CAPACIDAD	FRENTE	FONDO	ALTO_	Masa aproxima-	
[kVA]	[MM]	[MM]	[MM]	Cu- Cu	Al- Al
3				49.8	
5				62.8	
7.5		770	.=.	71.8	69.8
10	425	370	474	84.8	83.8
15				109.8	105.8
30				161.1	147.1
45	626	389	702	214.1	187.1
75				301.9	273.9
112.5	789	439	902	366.9	346.9
150				526.9	506.9
225	879	521	1037	579.9	515.9
300	1074	629	1088	645.5	622.5
500	1242	729	1187	980	843


TRANSFORMADORES TIPO SUBESTACIÓN


Este tipo de transformadores son diseñados normalmente con gargantas en media y baja tensión, para ser acoplados en subestaciones eléctricas y tableros de distribución, son utilizados en las industrias, hpoteles, centros comerciales, escuelas, hospitales, centros de recreación y en las plataformas de Pemex.

MARCA	CONTINENTAL ELECTRIC								
Capacidad [kVA]		Subestación Dist. Desde 112,5 kVA, hasta 500 kVA Subestación Potencia Desde 501 kVA, hasta 300 kVA							
Tipo de enfriamiento	ONAN	Fases		3Ф					
Altitud de operación	2 300 m s.n.m.	Frecuencia	a	60 Hz					
		PRIMARIO	S	ECUNDARIO					
Tensiones [V] Y clase de aislamiento	2	13 200 V (15 kV) 23 000 V (25 kV) 34 500 (34,5 kV)	120 /240 V (1,2 kV) 120 / 240 V (1,2 kV) 480 Y / 277 (1,2 kV)						
		PRIMARIO	S	ECUNDARIO					
Derivaciones	<u> </u>	<u>+</u> 2 DE 2,5% c/u	No	aplica					
Conexión	[Delta △ Delta △ Delta ≺	Delt	rella ≺ ta △ rella ≺					
NBAI BIL	((15 kV) 95 kV (25 kV) 150 kV (34,5kV) 200 kV	(1,2	kV) 30 kV					
Evaluación de temperatura		55°C 65°C	Tipo costa Tipo estáno	dar					

CAPACIDAD	CLASE 15 kV			CIDAD CLASE 15 kV CLASE 25 kV				CLA	ASE 34	1,5 kV		
kVA	А	В	С	MASA [kg]	Α	В	С	MASA [kg]	А	В	С	MASA [kg]
225	1250	1600	1032	1343	1500	1660	1232	1711	1760	1820	1550	2216
300	1250	1685	1082	1900	1590	1820	1182	2079	1780	1980	1650	2663
500	1250	1955	1132	2616	1640	1760	1282	2722	1860	2185	1750	3258
750	1400	2060	1950	3500	1650	2110	1950	3650	1850	2240	2050	4000
1000	1410	2150	2050	4100	1660	2150	2050	4300	1860	2240	2100	4500
1250	1590	2310	2100	5000	1840	2310	2100	5000	2040	2310	2100	5000
1500	1600	2410	2150	5200	1850	2410	2150	5500	2050	2500	2150	6000
2000	1620	2540	2250	6400	1870	2540	2250	6600	2070	2540	2250	6700
2500	1670	2560	2280	7600	1920	2560	2280	7600	2120	2560	2280	7800
3000	2220	2570	2375	7780	2220	2570	2380	8000	2390	2570	2380	8250

^{*}Nota: dimensiones en milímetros (mm)

CONDUCTORES

Conductores: Alambre y/o solera magneto de

cobre, electrolitíco con pureza 99%

Aislamiento: Poli-amida modificada clase 200 °C

Nomex con traslape del 50%

Calibre: Según diseño

Soldadura: Fost copper, opcional plata

NW-35-C Norma:

AISLANTES

Aislamiento:

Insuldur y prespan

Clase de aislamiento

15, 25 y 34.5 kV

eléctrico

NÚCLEO

Circuito Mágnetico Apilado de lámina de acero al silicio de gramo orientado rolado en frio

Espesor Ángulo entre M3 y M4 (AISI) 45 y 90 grados

hierro Pérdidas:

1.65 W/kg @ 1.7 T a 60 Hz máximo

GABINETE

Aislamiento

ambiental:

NEMA 1 Y NEMA 3R

Material: Lámina negra varios calibres Uniones

Soldadura en base y tanque,

atornillado en tapa, registro y gargantas. Color: Gris Ansi 61 o a especificación del cliente

Radiadores: Baterías de obleas según diseño

Gargantas: En alta y baja tensión

ESPECIFICACIONES TÉRMICAS

Clase: Α

Elevación de

65°C*, opcional a 55°C

temperatura Enfriamiento:

Clase de aislante: Insuldur 110°C y Prespan 130°C

CONEXIONES

Delta - Estrella Estrella - Delta Delta - Delta **Especiales**

ACABADO

Horneado

Pruebas mecánicas

PRUEBAS DE LABORATORIO

Resistencía de aislamiento

Relación de transformación

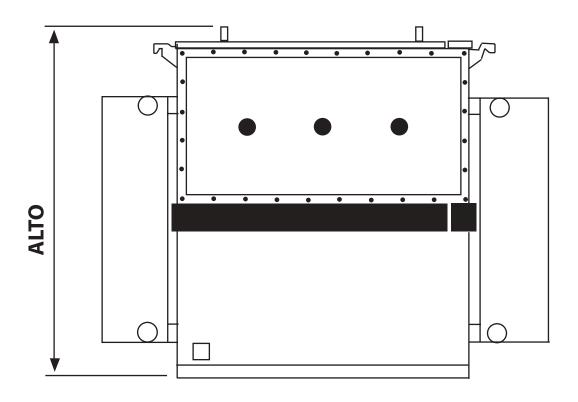
Resistencia Óhmica de los devanados

Tensión Aplicada Tensión Inducida

Polaridad y secuencias de fases

Perdidas en el vacio y corriente de excitación

Perdida con carga y % de impedancia


Hermeticidad del tanque

Rigidez dialéctrica del líquido aislante

*Elevación de temperatura sobre una temperatura ambiente máxima de 40 $^{\circ}\text{C}$ y una temperatuta mbiente de 30 °C durante el período de 24 horas.

	TRANSFORMADORES TRIFÁSICOS TIPO SUBESTACIÓN														
CAPACIDAD	FRI	ENTE [m	m]	ALTO [mm]	FR	ENTE [m	m]								
[kVA]	15 kV	25 kV	34.5 kV	ALTO [mm]	15 kV	25 kV	34.5 kV	15 kV	25 kV	34.5 kV					
75	1100			1365	1180	1180	1390	929	935	960					
112.5	1190	1313		1303	1100	1100		955	960	985					
150	1295		1680	1460	1220	1220	1430	1286	1295	1313					
225	1850	1850		1460	1220	1220		1360	1365	1386					
300	1485	1480		1630	1620	1620	1620	2095	2100	2121					
500	1660	1660	2010	1030	1810	1810	1810	2215	2222	2245					
750	1706	1705	2016	1010	0165	0165	2165	2950	2956	2976					
1000	2040	2040	2405	1810	2165	2165		3480	3480	3502					
1500	2145	2145	2405	2070	2185	2190	2185	4425	4432	4444					
2000	2573	2575	2745	2070	2183	2190	2103	5265	5272	5303					

01 55 5888 9505 / 01800 8412 6058 www.voltiak.com